Human Choline Kinase-α Promotes Hepatitis C Virus RNA Replication through Modulation of Membranous Viral Replication Complex Formation

نویسندگان

  • Mun-Teng Wong
  • Steve S. Chen
چکیده

UNLABELLED Hepatitis C virus (HCV) infection reorganizes cellular membranes to create an active viral replication site named the membranous web (MW). The role that human choline kinase-α (hCKα) plays in HCV replication remains elusive. Here, we first showed that hCKα activity, not the CDP-choline pathway, promoted viral RNA replication. Confocal microscopy and subcellular fractionation of HCV-infected cells revealed that a small fraction of hCKα colocalized with the viral replication complex (RC) on the endoplasmic reticulum (ER) and that HCV infection increased hCKα localization to the ER. In the pTM-NS3-NS5B model, NS3-NS5B expression increased the localization of the wild-type, not the inactive D288A mutant, hCKα on the ER, and hCKα activity was required for effective trafficking of hCKα and NS5A to the ER. Coimmunoprecipitation showed that hCKα was recruited onto the viral RC presumably through its binding to NS5A domain 1 (D1). hCKα silencing or treatment with CK37, an hCKα activity inhibitor, abolished HCV-induced MW formation. In addition, hCKα depletion hindered NS5A localization on the ER, interfered with NS5A and NS5B colocalization, and mitigated NS5A-NS5B interactions but had no apparent effect on NS5A-NS4B and NS4B-NS5B interactions. Nevertheless, hCKα activity was not essential for the binding of NS5A to hCKα or NS5B. These findings demonstrate that hCKα forms a complex with NS5A and that hCKα activity enhances the targeting of the complex to the ER, where hCKα protein, not activity, mediates NS5A binding to NS5B, thereby promoting functional membranous viral RC assembly and viral RNA replication. IMPORTANCE HCV infection reorganizes the cellular membrane to create an active viral replication site named the membranous web (MW). Here, we report that human choline kinase-α (hCKα) acts as an essential host factor for HCV RNA replication. A fraction of hCKα colocalizes with the viral replication complex (RC) on the endoplasmic reticulum (ER) in HCV-infected cells. NS3-NS5B expression increases ER localization of wild-type, but not D288A mutant, hCKα, and hCKα activity facilitates the transport of itself and NS5A to the ER. Silencing or inactivation of hCKα abrogates MW formation. Moreover, hCKα is recruited by NS5A independent of hCKα activity, presumably through binding to NS5A D1. hCKα activity then mediates the ER targeting of the hCKα-NS5A complex. On the ER membrane, hCKα protein, per se, induces NS5A binding to NS5B, thereby promoting membranous RC formation and viral RNA replication. Our study may benefit the development of hCKα-targeted anti-HCV therapeutics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hepatitis C Virus Subverts Human Choline Kinase-α To Bridge Phosphatidylinositol-4-Kinase IIIα (PI4KIIIα) and NS5A and Upregulates PI4KIIIα Activation, Thereby Promoting the Translocation of the Ternary Complex to the Endoplasmic Reticulum for Viral Replication

In this study, we elucidated the mechanism by which human choline kinase-α (hCKα) interacts with nonstructural protein 5A (NS5A) and phosphatidylinositol-4-kinase IIIα (PI4KIIIα), the lipid kinase crucial for maintaining the integrity of virus-induced membranous webs, and modulates hepatitis C virus (HCV) replication. hCKα activity positively modulated phosphatidylinositol-4-phosphate (PI4P) le...

متن کامل

The Role of the Phosphatidylinositol 4-Kinase PI4KA in Hepatitis C Virus-Induced Host Membrane Rearrangement

BACKGROUND Hepatitis C virus (HCV), like other positive-sense RNA viruses, replicates on an altered host membrane compartment that has been called the "membranous web." The mechanisms by which the membranous web are formed from cellular membranes are poorly understood. Several recent RNA interference screens have demonstrated a critical role for the host phosphatidylinositol 4-kinase PI4KA in H...

متن کامل

Hepatitis C Virus-Induced Cytoplasmic Organelles Use the Nuclear Transport Machinery to Establish an Environment Conducive to Virus Replication

Hepatitis C virus (HCV) infection induces formation of a membranous web structure in the host cell cytoplasm where the viral genome replicates and virions assemble. The membranous web is thought to concentrate viral components and hide viral RNA from pattern recognition receptors. We have uncovered a role for nuclear pore complex proteins (Nups) and nuclear transport factors (NTFs) in the membr...

متن کامل

Mechanisms of Cellular Membrane Reorganization to Support Hepatitis C Virus Replication.

Like all positive-sense RNA viruses, hepatitis C virus (HCV) induces host membrane alterations for its replication termed the membranous web (MW). Assembling replication factors at a membranous structure might facilitate the processes necessary for genome replication and packaging and shield viral components from host innate immune defenses. The biogenesis of the HCV MW is a complex process inv...

متن کامل

Proline-serine-threonine phosphatase-interacting protein 2 (PSTPIP2), a host membrane-deforming protein, is critical for membranous web formation in hepatitis C virus replication.

Hepatitis C virus (HCV) reorganizes intracellular membranes to establish sites of replication. How viral and cellular proteins target, bind, and rearrange specific membranes into the replication factory remains a mystery. We used a lentivirus-based RNA interference (RNAi) screening approach to identify the potential cellular factors that are involved in HCV replication. A protein with membrane-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 90  شماره 

صفحات  -

تاریخ انتشار 2016